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Problems

Compression Comparison

Goal

MOTIVATION

• Pruning:

Remove unnecessary weights 

→ smaller and faster, but may lose accuracy

Achieve lightweight, real-time GGCNN models that 

maintain comparable IoU accuracy with much smaller 

size and faster speed.

• Quantization:

Use lower-precision numbers 

→ saves memory, but hardware-dependent

• Knowledge Distillation:

Train a small student to learn from a 

large teacher 

→ keeps good accuracy with less size

• High computational cost of deep grasp detection models 

limits deployment on embedded systems or edge devices.

• Original GGCNN, though efficient, still struggles with real-

time inference under limited resources.

Presenting the motivation for addressing these issues.
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CONTRIBUTIONS

Showing why this research is important to the field.

KD-based GGCNN Compression Framework

Tailored KD framework preserves dense grasp 

prediction while reducing model complexity.

Lightweight Student Architectures

Two optimized student models exploring trade-offs in 

speed, size, and accuracy.

Enhanced Deployment Efficiency

Faster inference, reduced memory usage, and higher 

throughput with minimal accuracy loss.

Real-time Edge Application

Demonstrated strong performance on resource-limited 

robotic platforms.

Related Work Methodology ConclusionResultsMotivation Contribution
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Point-wise Knowledge Distillation 

Structural Knowledge Distillation 

Knowledge Distillation with Multiple Teachers

Real-Time Robotic Deployment and Edge Devices

• Pixel-level alignment of teacher and student outputs

• Soft-target KD

• Enables lightweight GGCNN grasp prediction

Reference: D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv 

preprint arXiv:1503.02531, 2015

• Preserves spatial & relational consistency

• Effective for segmentation and dense tasks

• Future extension for grasp detection

Reference: L. Peng, R. Cai, J. Xiang, J. Zhu, W. Liu, W. Gao, and Y. Liu, “LiteGrasp: A Light 

Robotic Grasp Detection via Semi-Supervised Knowledge Distillation,” IEEE Robotics and 

Automation Letters, vol. 9, pp. 7995–8002, 2024

• Aggregates diverse knowledge for robustness

• High training cost in prior studies

• This work adopts single-teacher GGCNN for efficiency

Reference: Y. Liu, K. Li, P. Sun, Y. Zhang, and C. Li, “Structured knowledge distillation for 

semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 

2019, pp. 2604–2613.

• Edge devices require compact, low-latency models

• KD balances accuracy & efficiency

• Two student models achieve faster, smaller, real-time 

performance

Reference: H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for the 

Internet of Things with Edge Computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, Jan. 2018.

RELATED WORK

Contribution Methodology ConclusionResultsMotivation Related Work

Reviewing existing methods and research progress.
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KNOWLEDGE DISTILLATION FOR GGCNN

The structure of Knowledge Distillation.

Contribution Related Work ConclusionResultsMotivation Methodology

Fig 1. Knowledge Distillation Framework
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KNOWLEDGE DISTILLATION FOR GGCNN

The structure of Knowledge Distillation Framework.

Performance Gap Reduction

Structured KD effectively narrows the performance gap 

between teacher and student models.

Contribution Related Work ConclusionResultsMotivation Methodology

Soft Targets

The pre-trained, frozen teacher model provides 

soft targets for distillation.

Hybrid Loss

The student model is trained end-to-end with a weighted 

MSE combining ground truth and teacher outputs.

Stable Convergence

Architectural Flexibility

No layer sharing—output-only distillation enables flexible 

and efficient student model design.

Progressive supervision enhances stability and ensures 

reliable convergence.
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Loss Formulation

• Hybrid loss: 

combination of ground truth and distillation losses

• Equation:

𝐿 = 1 − 𝛼 ∙ 𝐿𝐺𝑇 + 𝛼 ∙ 𝐿𝐾𝐷  

LOSS COMPUTATION AND OPTIMIZATION

Contribution Related Work ConclusionResultsMotivation Methodology

Loss Components

• Ground Truth Loss (𝐿𝐺𝑇):

MSE between student outputs and labeled data

1. grasp quality p

2. angle components c = cos(θ), s = sin(θ)

3. grasp width w

• Distillation Loss (𝐿𝐾𝐷):

MSE between student and teacher outputs on the same 

attributes

Describing the formulation and components of the loss function.
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𝑎𝑖 : model prediction

𝑏𝑖: target value 

𝑁: number of prediction elements

Mean Squared Error (MSE)

LOSS COMPUTATION AND OPTIMIZATION

Contribution Related Work ConclusionResultsMotivation Methodology

Training Benefits

• Dual-objective supervision enhances feature learning

• Faster convergence and better generalization

• Effective under resource-constrained environments

𝑀𝑆𝐸 𝑎, 𝑏 =
1

𝑁
෍

𝑖=1

𝑛

𝑎𝑖 − 𝑏𝑖
2 

Fig 2. Mean Squared Error Formula

Highlighting the relationship between loss computation and training benefits.
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Student GGCNN v1

Student GGCNN v2

• Encoder ：

Conv (16, k = 9, s = 3) → Conv (8, 5, 2) → Conv (4, 3, 2)

• Decoder ：

DeConv (4, 3, 2) → DeConv (8, 5, 2) → DeConv (16, 9, 3)

• Output Heads： p, c, s, w = Conv2D(h₆, 1, 2)

• Encoder ：

Conv(24, k = 9, s = 3) → Conv(12, 5, 2) → Conv(6, 3, 2)

• Decoder ：

DeConv(6, 3, 2) → DeConv(12, 5, 2) → DeConv(24, 9, 3)

• Output Heads： p, c, s, w = Conv2D(h₆, 1, 2)

STUDENT MODELS

The structure of each models. 

Contribution Related Work ConclusionResultsMotivation Methodology

Fig 3. Student Model v1 Structure 
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Evaluation

Measured inference speed (FPS) and grasp accuracy.

GRASP POST-PROCESSING

Contribution Related Work ConclusionResultsMotivation Methodology

Post-processing

Converts raw model outputs into final predictions.

• Quality (p)

• Width (w)

• Angle components (cosine c and sine s)

Key Steps

• Normalize quality (Sigmoid)

• Ensure positive width (ReLU)

• Compute final angle 

Optional

Filtering to remove noise and smooth results.

Presenting how post-processing steps prepare grasp outputs for evaluation.
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Success Definition

IOU-BASED GRASP SUCCESS EVALUATION

Contribution Related Work ConclusionResultsMotivation Methodology

Key Performance Metrics

Goal

A grasp is "successful" if its IoU (Intersection over Union) with a 

ground truth box is 0.25%

• Grasp success rate (%)

• Average inference time (ms)

• Inference speed (FPS)

• Model parameter count

To systematically assess the real-time efficiency and prediction 

accuracy of the studaent models.

Fig4. Evaluation Flow

Defining success and key metrics for IoU-based grasp evaluation.
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Model Size 

• Teacher (GGCNN): 0.24 MB

• Student v1 (Small): 0.06 MB → −75%

• Student v2 (Medium): 0.14 MB → −42%

RESULTS

Comparison between various models.  

Contribution Related Work Methodology ConclusionResultsMotivation

Fig5. Model Size Comparison
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Inference Speed

• Teacher: 21.74 ms

• Student v1: 6.99 ms (≈ 3× faster)

• Student v2: 9.30 ms (≈ 2.3× faster)

RESULTS

Comparison between various models.  

Contribution Related Work Methodology ConclusionResultsMotivation

Fig6. Average Inference Time Comparison
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Accuracy (IoU)

• Teacher: 83.1 %

• Student v1: 79.8 % (−3.3 % drop)

• Student v2: 83.1 % = same as teacher

RESULTS

Comparison between various models.  

Contribution Related Work Methodology ConclusionResultsMotivation

Fig7. Model Size Comparison
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Throughput (FPS)

• Teacher: 46.0 FPS

• Student v1: 143.1 FPS (↑ 3×)

• Student v2: 107.5 FPS (↑ 2.3×)

RESULTS

Comparison between various models.  

Contribution Related Work Methodology ConclusionResultsMotivation

Fig8. Average Inference Time Comparison
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CONCLUSION

•.
Contribution Related Work Methodology ResultsMotivation Conclusion

Summary Future work

• Proposal: 

A Knowledge Distillation (KD) framework to compress the 

GGCNN model.

• Result: 

Created two student models balancing speed, size, and accuracy.

Student v1 (Speed): Prioritizes speed and small size.

Student v2 (Accuracy): Maintains teacher's accuracy but is faster.

• Key Value: 

An easy way to get real-time grasping on resource-constrained 

hardware.

• Explore: 

Advanced KD (structural, multi-teacher)

Hybrid methods (KD + pruning/quantization)

• Extend: 

Apply the framework to richer inputs like RGB-D or multi-view 

data.

• Challenge:

Test models in more complex scenarios, like cluttered 

environments or dynamic tasks.

Summary of Results and Future Extensions
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